____ C.U.SHAH UNIVERSITY **Summer Examination-2017**

Subject Name: Transform Theory

	Subject Code: 4SC05TTE1		Branch: B.Sc.(Mathematics)			
	Semeste	r: 5 Date: 01/04/2017	Time: 02:30 To 05:30 Marl	ks: 70		
	 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 					
Q-1		Attempt the following question	ns:	(14)		
	a)	State Dirichlet's condition.		(02)		
	b)	If $f(x) = x \cos x$ in $(-\pi, \pi)$ the	en find value of a_n	(01)		
	c) d)	What is period of sin <i>pt</i> ? State first shifting theorem.		(01) (02)		
	e)	Find Laplace transform of e^{4t} +	- cos at.	(02)		
	f)	If $L(f(t)) = \overline{f}(s)$, then $L\left(\int_0^t f(s)\right)$	(u)du =	(01)		
	g)	$L^{-1}\left[\frac{1}{(s-a)^n}\right] =$		(01)		
	h)	Define Z – transform.		(02)		
	i)	Derive Z – transform of $\frac{1}{n!}$		(02)		
Attempt any four questions from Q-2 to Q-8						
Q-2	a)	Attempt all questions State and prove Euler's formula	e for Fourier series expansion of a function	(14) $(f(x))$. (07)		
	b)	State and prove Convolution the $L^{-1}\left\{\frac{1}{s(s-1)}\right\}$.	corem. Apply convolution theorem to evalu	ate (07)		
Q-3		Attempt all questions		(14)		
	a)	Obtain Fourier series for the fun	function $f(x) = x$, in the interval $0 < x < 2$	π. (07)		
	b)	Find Laplace inverse transform	of $\frac{1}{(s+1)(s-2)(s-3)}$.	(07)		
Q-4	a)	Attempt all questions Find Fourier cosine and sine inte	egral of $f(x) = e^{-kx}$ (x > 0, k > 0)	(14) (07)		
			Som University	Page 1 of 2		

	b)	b) (i) Find finite Fourier cosine transform of $f(x) = 2x$, $0 < x < 4$. (ii) Find finite Fourier sine transform of $f(x) = lx - x^2$, $0 \le x \le l$.		
Q-5	a)	Attempt all questions Prove that (a) $Z(a^n) = \frac{z}{z-a}$	(14) (06)	
		(b) $Z(n^p) = -z \frac{d}{dz} Z(n^{p-1}), p$ is a positive integer		
	b)	State and prove Damping rule	(05)	
	c)	Find Z- transform of $2\cos n\theta + 3\sin n\theta + n^2$	(03)	
Q-6		Attempt all questions	(14)	
	a)	Find Laplace transform of the following (i) $e^{-3t} \sin^2 t$ (ii) $\frac{\sin t}{t}$ (iii) $t^2 \sin 4t$	(07)	
	b) Using Laplace transform, find the solution of the initial value problem $y'' - 4y' + 4y = 64 \sin 2t$, $y(0) = 0$, $y'(0) = 1$			
Q-7		Attempt all questions	(14)	
	a)	Find Fourier series expansion of function $f(x) = x^2, -\pi \le x \le \pi$. Hence, find $\sup \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$.	(07)	
	b)	Find Fourier half range cosine series of the function f(t) = 2t, $0 < t < 1= 2(2-t)$, $1 < t < 2$	(07)	
Q-8		$= 2(2-t), 1 \le t \le 2$ Attempt all questions	(14)	
C	a)	Obtain Fourier series for the function $f(x) = \pi x$ $0 \le x \le 1$ = $\pi (2 - x) \ 1 \le x \le 2$	(06)	
	b)	where $p = 2l = 2$. Find Fourier sine transform of $f(x) = 0$ $0 < x < a$ $= x \ a \le x \le b$ $= 0 \ x > b$	(05)	
	c)	Evaluate: $\int_0^\infty t \ e^{-3t} \cos t \ dt$	(03)	

